Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Cell Physiol. 2006 Oct;291(4):C750-6. Epub 2006 May 31.

Deglycosylation of the beta1-subunit of the BK channel changes its biophysical properties.

Author information

1
Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557-0046, USA.

Abstract

Large-conductance Ca(2+)-activated potassium (BK) channels are composed of pore-forming alpha-subunits and auxiliary beta-subunits. The alpha-subunits are widely expressed in many cell types, whereas the beta-subunits are more tissue specific and influence diverse aspects of channel function. In the current study, we identified the presence of the smooth muscle-specific beta1-subunit in murine colonic tissue using Western blotting. The native beta1-subunits migrated in SDS-PAGE as two molecular mass bands. Enzymatic removal of N-linked glycosylations from the beta1-subunit resulted in a single band that migrated at a lower molecular mass than the native beta1-subunit bands, suggesting that the native beta1-subunit exists in either a core glycosylated or highly glycosylated form. We investigated the functional consequence of deglycosylating the beta1-subunit during inside-out single-channel recordings. During inside-out single-channel recordings, with N-glycosidase F in the pipette solution, the open probability (P(o)) and mean open time of BK channels increased in a time-dependent manner. Deglycosylation of BK channels did not affect the conductance but shifted the steady-state voltage of activation toward more positive potentials without affecting slope when Ca(2+) concentration was <1 microM. Treatment of myocytes lacking the beta1-subunits of the BK channel with N-glycosidase F had no effect. These data suggest that glycosylations on the beta1-subunit in smooth muscle cells can modify the biophysical properties of BK channels.

PMID:
16738006
DOI:
10.1152/ajpcell.00116.2006
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center