Steady-state kinetic mechanism of PDK1

J Biol Chem. 2006 Aug 4;281(31):21670-21681. doi: 10.1074/jbc.M602448200. Epub 2006 May 31.

Abstract

PDK1 catalyzes phosphorylation of Thr in the conserved activation loop region of a number of its downstream AGC kinase family members. In addition to the consensus sequence at the site of phosphorylation, a number of PDK1 substrates contain a PIF sequence (PDK1-interacting fragment), which binds and activates the kinase domain of PDK1 (PDK1(deltaPH)). To gain further insight to PIF-dependent catalysis, steady-state kinetic and inhibition studies were performed for His6-PDK1(deltaPH)-catalyzed phosphorylation of PDK1-Tide (Tide), which contains an extended "PIF" sequence C-terminal to the consensus sequence for PDK1 phosphorylation. In two-substrate kinetics, a large degree of negative binding synergism was observed to occur on formation of the active ternary complex (alphaKd(ATP) = 40 microM and alphaKd(Tide) = 80 microM) from individual transitory binary complexes (Kd(ATP) = 0.6 microM and Kd(Tide) = 1 microM). On varying ATP concentrations, the ADP product and the (T/E)-PDK1-Tide product analog (p'Tide) behaved as competitive and noncompetitive inhibitors, respectively; on varying Tide concentrations, ADP and p'Tide behaved as noncompetitive and competitive inhibitors, respectively. Also, negative binding synergism was associated with formation of dead-end inhibited ternary complexes. Time progress curves in pre-steady-state studies under "saturating" or kcat conditions showed (i) no burst or lag phenomena, (ii) no change in reaction velocity when adenosine 5'-O-(thiotriphosphate) was used as a phosphate donor, and (iii) no change in reaction velocity on increasing relative microviscosity (0 < or = eta/eta0 < or = 3). Taken together, PDK1-catalyzed trans-phosphorylation of PDK1-Tide approximates a Rapid Equilibrium Random Bi Bi system, where motions in the central ternary complex are largely rate-determining.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3-Phosphoinositide-Dependent Protein Kinases
  • Binding, Competitive
  • Catalysis
  • Enzyme Inhibitors / pharmacology
  • Humans
  • Kinetics
  • Models, Theoretical*
  • Phosphorylation
  • Protein Serine-Threonine Kinases / antagonists & inhibitors
  • Protein Serine-Threonine Kinases / metabolism*

Substances

  • Enzyme Inhibitors
  • 3-Phosphoinositide-Dependent Protein Kinases
  • PDPK1 protein, human
  • Protein Serine-Threonine Kinases