Send to

Choose Destination
See comment in PubMed Commons below
Anal Chem. 2006 Jun 1;78(11):3699-705.

General contribution of nonspecific interactions to fluorescence intensity.

Author information

Instituto de Carboquímica, CSIC, P.O. Box 549, 50080 Zaragoza, Spain.


Many chemical compounds, including nonfluorescent ones, induce changes in the fluorescence spectra of certain probes, such as berberine cation and Reichardt's betaine, both in the absence and the presence of solvent, that affect almost exclusively emission intensity. In this work, the application of fluorescence detection by intensity changes (FDIC) to HPLC and TLC chromatographic systems with fluorescence detectors has been studied. FDIC detection is of special interest in detecting nonfluorescent analytes, either in HPLC or in TLC mode. It does not involve covalent interactions, and the dielectric permittivity (epsilon) of the medium plays an important role. The balance between nonspecific and specific interactions produces either an increase or a decrease in fluorescence intensity. Therefore, the influence of chromatographic conditions and chemical structure of analytes on the sign and magnitude of fluorescence peaks for sample detection in HPLC and TLC systems has been discussed. In general, probe nature and concentration determine response and detection sensitivity for a given sample in TLC and HPLC. As solubility and fluorescence properties in solvents determine the operating conditions for a FDIC probe in HPLC mode, nature and flows of mobile phase and solvent are important for chromatographic response and detection sensitivity.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center