Format

Send to

Choose Destination
Microbiology. 2006 Jun;152(Pt 6):1649-59.

Data mining and characterization of a novel pediocin-like bacteriocin system from the genome of Pediococcus pentosaceus ATCC 25745.

Author information

1
Laboratory of Microbial Gene Technology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N1432 Aas, Norway. dzung.diep@umb.no

Abstract

The genome of Pediococcus pentosaceus ATCC 25745 contains a gene cluster that resembles a regulated bacteriocin system. The gene cluster has an operon-like structure consisting of a putative pediocin-like bacteriocin gene (termed penA) and a potential immunity gene (termed peiA). Genetic determinants involved in bacteriocin transport and regulation are also found in proximity to penA and peiA but the so-called accessory gene involved in transport and the inducer gene involved in regulation are missing. Consequently, this bacterium is a poor bacteriocin producer. To analyse the potency of the putative bacteriocin operon, the two genes penA-peiA were heterologously expressed in a Lactobacillus sakei host that contains the complete apparatus for gene activation, maturation and externalization of bacteriocins. It was demonstrated that the heterologous host expressing penA and peiA produced a strong bacteriocin activity; in addition, the host became immune to its own bacteriocin, identifying the gene pair penA-peiA as a potent bacteriocin system. The novel pediocin-like bacteriocin, termed penocin A, has an isotopic mass [M+H]+ of 4684.6 Da as determined by mass spectrometry; this value corresponds well to the expected size of the mature 42 aa peptide containing a disulfide bridge. The bacteriocin is heat-stable but protease-sensitive and has a calculated pI of 9.45. Penocin A has a relatively broad inhibition spectrum, including pathogenic Listeria and Clostridium species. Immediately upstream of the regulatory genes reside some features that resemble remnants of a disrupted inducer gene. This degenerate gene was restored and shown to encode a double-glycine leader-containing peptide. Furthermore, expression of the restored gene triggered high bacteriocin production in P. pentosaceus ATCC 25745, thus confirming its role as an inducer in the pen regulon.

PMID:
16735728
DOI:
10.1099/mic.0.28794-0
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Ingenta plc
Loading ...
Support Center