Format

Send to

Choose Destination
FEBS J. 2006 Jul;273(13):2902-12. Epub 2006 May 30.

Characterization of a hemocyte intracellular fatty acid-binding protein from crayfish (Pacifastacus leniusculus) and shrimp (Penaeus monodon).

Author information

1
Department of Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Sweden. Irene.Soderhall@ebc.uu.se

Abstract

Intracellular fatty acid-binding proteins (FABPs) are small members of the superfamily of lipid-binding proteins, which occur in invertebrates and vertebrates. Included in this superfamily are the cellular retinoic acid-binding proteins and retinol-binding proteins, which seem to be restricted to vertebrates. Here, we report the cDNA cloning and characterization of two FABPs from hemocytes of the freshwater crayfish Pacifastacus leniusculus and the shrimp Penaeus monodon. In both these proteins, the binding triad residues involved in interaction with ligand carboxylate groups are present. From the sequence and homology modeling, the proteins are probably FABPs and not retinoic acid-binding proteins. The crayfish transcript (plFABP) was detected at high level in hemocytes, hepatopancreas, intestine and ovary and at low level in hematopoietic tissue and testis. Its expression in hematopoietic cells varied depending on the state of the crayfish from which it was isolated. Expression was 10-15 times higher in cultures isolated from crayfish with red colored plasma, in which hemocyte synthesis was high, if retinoic acid was added to the culture medium. In normal colored crayfish, with normal levels of hemocytes, no increase in expression of p1FABP was detected. Two other putative plFABP ligands, stearic acid and oleic acid, did not have any effect on plFABP expression in hematopoietic cells. These results suggest that retinoic acid-dependent signaling may be present in crustaceans.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center