Format

Send to

Choose Destination
See comment in PubMed Commons below
Langmuir. 2006 Jun 6;22(12):5419-26.

Guided three-dimensional growth of functional cardiomyocytes on polyethylene glycol nanostructures.

Author information

1
Microsystem Research Center, Korea Institute of Science and Technology, 138-791 Korea.

Abstract

We introduce well-defined nanopillar arrays of a poly(ethylene glycol) (PEG) hydrogel as a cell culture platform to guide a 3D construct of primary rat cardiomyocytes in vitro for potential tissue engineering applications. Ultraviolet (UV)-assisted capillary lithography was used to fabricate highly uniform approximately 150 nm PEG pillars with approximately 400 nm height. It was found that cell adhesion was significantly enhanced on PEG nanopillars (132 +/- 29 cells/mm2) compared to that on the bare PEG control (39 +/- 17 cells/mm2) (p < 0.05) but substantially reduced compared to that on the glass control (502 +/- 45 cells/mm2) (p < 0.01). Furthermore, in colonizing cardiomyocytes, the nanopillars stimulated self-assembled aggregates among the contacting cells with 3D growth, which is a unique feature for nanopatterned PEG hydrogels as a cell culture substrate. The 3D-grown cardiomyocytes retained their conductive and contractile properties, as evidenced by the observation of beating cardiomyocytes with robust action potential generation.

PMID:
16732672
DOI:
10.1021/la060283u
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center