Send to

Choose Destination
See comment in PubMed Commons below
J Chem Phys. 2006 May 21;124(19):194505.

Electron bubbles in helium clusters. I. Structure and energetics.

Author information

  • 1School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel.


In this paper we present a theoretical study of the structure, energetics, potential energy surfaces, and energetic stability of excess electron bubbles in ((4)He)(N) (N=6500-10(6)) clusters. The subsystem of the helium atoms was treated by the density functional method. The density profile was specified by a void (i.e., an empty bubble) at the cluster center, a rising profile towards a constant interior value (described by a power exponential), and a decreasing profile near the cluster surface (described in terms of a Gudermannian function). The cluster surface density profile width (approximately 6 A) weakly depends on the bubble radius R(b), while the interior surface profile widths (approximately 4-8 A) increase with increasing R(b). The cluster deformation energy E(d) accompanying the bubble formation originates from the bubble surface energy, the exterior cluster surface energy change, and the energy increase due to intracluster density changes, with the latter term providing the dominant contribution for N=6500-2 x 10(5). The excess electron energy E(e) was calculated at a fixed nuclear configuration using a pseudopotential method, with an effective (nonlocal) potential, which incorporates repulsion and polarization effects. Concurrently, the energy V(0) of the quasi-free-electron within the deformed cluster was calculated. The total electron bubble energies E(t)=E(e)+E(d), which represent the energetic configurational diagrams of E(t) vs R(b) (at fixed N), provide the equilibrium bubble radii R(b) (c) and the corresponding total equilibrium energies E(t) (e), with E(t) (e)(R(e)) decreasing (increasing) with increasing N (i.e., at N=6500, R(e)=13.5 A and E(t) (e)=0.86 eV, while at N=1.8 x 10(5), R(e)=16.6 A and E(t) (e)=0.39 eV). The cluster size dependence of the energy gap (V(0)-E(t) (e)) allows for the estimate of the minimal ((4)He)(N) cluster size of N approximately 5200 for which the electron bubble is energetically stable.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Institute of Physics
    Loading ...
    Support Center