Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1991 Mar 5;266(7):4088-93.

Adenine nucleotides are required for activation of rat atrial natriuretic peptide receptor/guanylyl cyclase expressed in a baculovirus system.

Author information

1
Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0295.

Abstract

Atrial natriuretic peptide (ANP) binds to a transmembrane receptor having intrinsic guanylyl cyclase activity; this receptor has been designated GC-A. Binding of ANP to GC-A stimulates its catalytic activity, resulting in increased production of the second messenger, cyclic GMP. Here we show that GC-A can be expressed in insect cells using a recombinant baculovirus and that the expressed protein retained its abilities to bind ANP and to function as an ANP-activated guanylyl cyclase. In addition, GC-A produced in insect cells was absolutely dependent on the presence of adenine nucleotides for activation by ANP. Millimolar concentrations of ATP were required for optimal activation. The relative potencies of various nucleotides for activation was adenosine 5'-O-(thiotriphosphate) greater than ATP greater than ADP, adenosine 5'-(beta, gamma-imino)triphosphate greater than ADP beta S. AMP had no effect. These studies suggest that binding of an adenine nucleotide, most likely to the protein kinase-like domain of GC-A, is absolutely required for ANP activation. Regulation of guanylyl cyclase activation by adenine nucleotides represents a novel mechanism for the modulation of signal transduction, possibly analogous in some respects to the role of guanine nucleotides and G proteins in the regulation of adenylyl cyclase activity.

PMID:
1671858
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center