Send to

Choose Destination
Free Radic Biol Med. 2006 Jun 1;40(11):1875-88. Epub 2006 Feb 17.

Sphingolipid signaling and redox regulation.

Author information

Division of Developmental Neurological Disorder in Charles P. Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Room 505, 171 Ashley Avenue, Charleston, SC 29425, USA.


Sphingolipids including ceramide and its derivatives such as ceramide-1-phosphate, glycosyl-ceramide, and sphinogosine (-1-phosphate) are now recognized as novel intracellular signal mediators for regulation of inflammation, apoptosis, proliferation, and differentiation. One of the important and regulated steps in these events is the generation of these sphingolipids via hydrolysis of sphingomyelin through the action of sphingomyelinases (SMase). Several lines of evidence suggest that reactive oxygen species (ROS; O2-, H2O2, and OH-,) and reactive nitrogen species (RNS; NO, and ONOO-) and cellular redox potential, which is mainly regulated by cellular glutathione (GSH), are tightly linked to the regulation of SMase activation. On the other hand, sphingolipids are also known to play an important role in maintaining cellular redox homeostasis through regulation of NADPH oxidase, mitochondrial integrity, and antioxidant enzymes. Therefore, this paper reviews the relationship between cellular redox and sphingolipid metabolism and its biological significance.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center