Format

Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2006 May 15;66(10):5047-55.

Antiangiogenic antithrombin induces global changes in the gene expression profile of endothelial cells.

Author information

1
Center for Molecular Biology of Oral Diseases and Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois 60612, USA. zhang98@uic.edu

Abstract

Antithrombin, a serpin family protease inhibitor crucial to hemostasis, acquires antiangiogenic properties on undergoing conformational alterations induced by limited proteolysis or elevated temperature. To better understand the biochemical mechanisms underlying antithrombin antiangiogenic activity, we did genome-wide expression profiling, coupled with quantitative reverse transcription-PCR, Northern blot, and Western blot analyses, to characterize the gene expression patterns that are induced by antiangiogenic antithrombin in cultured primary human umbilical vein endothelial cells. Overall, 35 genes with significantly increased expression and 93 genes with significantly reduced expression (> or =2-fold changes) due to antiangiogenic antithrombin treatment were identified. More than half of the down-regulated genes have well-established proangiogenic functions in endothelial cells, including cell-surface and matrix proteoglycans (e.g., perlecan, biglycan, and syndecans 1 and 3) and mitogenesis-related signaling proteins (e.g., mitogen-activated protein kinase 3, signal transducers and activators of transcription 2, 3, and 6, and early growth response factor 1). In contrast, most up-regulated genes (e.g., caspase-3, p21, tissue inhibitor of metalloproteinases 1, 2, and 3, and adenomatosis polyposis coli) are known for their antiangiogenic functions which include the promotion of cell apoptosis and cell cycle arrest and the inhibition of tumor growth and metastasis. These results show that the antiangiogenic activity of antithrombin is mediated at least in part by a global genetic reprogramming of endothelial cells and strongly implicate an endothelial cell ligand-receptor signaling mechanism in this reprogramming.

PMID:
16707426
DOI:
10.1158/0008-5472.CAN-05-4449
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center