Send to

Choose Destination
Xenobiotica. 2006 Feb-Mar;36(2-3):119-218.

Modulation of the growth hormone-insulin-like growth factor (GH-IGF) axis by pharmaceutical, nutraceutical and environmental xenobiotics: an emerging role for xenobiotic-metabolizing enzymes and the transcription factors regulating their expression. A review.

Author information

The Horseracing Forensic Laboratories (HFL), Fordham, UK.


The growth hormone-insulin-like growth factor (GH-IGF) axis has gained considerable focus over recent years. One cause of this increased interest is due to a correlation of age-related decline in plasma GH/IGF levels with age-related degenerative processes, and it has led to the prescribing of GH replacement therapy by some practitioners. On the other hand, however, research has also focused on the pro-carcinogenic effects of high GH-IGF levels, providing strong impetus for finding regimes that reduce its activity. Whereas the effects of GH/IGF activity on the action of xenobiotic-metabolizing enzyme systems is reasonably well appreciated, the effects of xenobiotic exposure on the GH-IGF axis has not received substantial review. Relevant xenobiotics are derived from pharmaceutical, nutraceutical and environmental exposure, and many of the mechanisms involved are highly complex in nature, not easily predictable from existing in vitro tests and do not always predict well from in vivo animal models. After a review of the human and animal in vivo and in vitro literature, a framework for considering the different levels of direct and indirect modulation by xenobiotics is developed herein, and areas that still require further investigation are highlighted, i.e. the actions of common endocrine disruptors such as pesticides and phytoestrogens, as well as the role of xenobiotic-metabolizing enzymes and the transcription factors regulating their expression. It is anticipated that a fuller appreciation of the existing human paradigms for GH-IGF axis modulation gained through this review may help explain some of the variation in levels of plasma IGF-1 and its binding proteins in the population, aid in the prescription of particular dietary regimens to certain individuals such as those with particular medical conditions, guide the direction of long-term drug/nutraceutical safety trials, and stimulate ideas for future research. It also serves to warn athletes that using compounds touted as performance enhancing because they promote short-term GH release could in fact be detrimental to performance in the long-run.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center