Send to

Choose Destination
See comment in PubMed Commons below
Microbes Infect. 2006 May;8(6):1539-49. Epub 2006 Apr 21.

Impaired T-cell differentiation in the thymus at the early stages of acute pathogenic chimeric simian-human immunodeficiency virus (SHIV) infection in contrast to less pathogenic SHIV infection.

Author information

Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoinkawara-Machi, Sakyo-Ku, Kyoto 606-8507, Japan.


One of the mechanisms by which HIV infection induces the depletion of CD4+ T cells has been suggested to be impairment of T-cell development in the thymus, although there is no direct evidence that this occurs. To examine this possibility, we compared T-cell maturation in the intrathymic progenitors between macaques infected with an acute pathogenic chimeric simian-human immunodeficiency virus (SHIV), which causes profound and irreversible CD4+ T-cell depletion, and macaques infected with a less pathogenic SHIV, which causes only a transient CD4+ T-cell decline. Within 27 days post-inoculation (dpi), the two virus infections caused similar increases in plasma viral loads and similar decreases in CD4+ T-cell counts. However, in the thymus, the acute pathogenic SHIV resulted in increased thymic involution, atrophy and the depletion of immature T cells including CD4(+)CD8(+) double-positive (DP) cells, whereas the less pathogenic SHIV did not have these effects. Ex vivo differentiation of CD3(-)CD4(-)CD8(-) triple-negative (TN) intrathymic progenitors to DP cells was assessed by a monkey-mouse xenogenic fetal thymus organ culture system. Differentiation was impaired in the TN intrathymic progenitors of the acute pathogenic SHIV-infected monkeys, while differentiation was not impaired in the TN intrathymic progenitors of the less pathogenic SHIV-infected monkeys. These differences suggest that dysfunction of thymic maturation makes an important contribution to the irreversible depletion of circulating CD4+ T cells in vivo.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center