Format

Send to

Choose Destination
Virology. 2006 Aug 1;351(2):393-403. Epub 2006 May 15.

Intracellular-activated Notch1 can reactivate Kaposi's sarcoma-associated herpesvirus from latency.

Author information

1
Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, University of Pennsylvania Medical School, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.

Abstract

Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a predominantly latent infection in the infected host. Importantly, during latency, only a small number of viral encoded genes are expressed. This viral gene expression pattern contributes to the establishment of long-term infection as well as the ability of the virus to evade the immune system. Previous studies have been shown that the replication and transcription activator (RTA) encoded by ORF50 activates it downstream genes and initiates viral lytic reactivation through functional interaction with RBP-Jkappa, the major downstream effector of the Notch signaling pathway. This indicates that RTA can usurp the conserved Notch signaling pathway and mimic the activities of intracellular Notch1 to modulate gene expression. In this report, we show that the activated intracellular domain of Notch1 (ICN) is aberrantly accumulated in KSHV latently infected pleural effusion lymphoma (PEL) cells. ICN activated the RTA promoter in a dose-dependent manner, and forced expression of ICN in latently infected KSHV-positive cells initiated full blown lytic replication with the production of infectious viral progeny. However, latency-associated nuclear antigen (LANA) which is predominantly expressed during latency can specifically down-modulate ICN-mediated transactivation of RTA and so control KSHV for lytic reactivation. These results demonstrate that LANA can inhibit viral lytic replication by antagonizing ICN function and suggest that LANA is a critical component of the regulatory control mechanism for switching between viral latent and lytic replication by directly interacting with effectors of the conserved cellular Notch1 pathway.

PMID:
16701788
DOI:
10.1016/j.virol.2006.03.047
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center