Send to

Choose Destination
Anaerobe. 2004 Apr;10(2):69-74.

Initiation of endospore formation in Clostridium acetobutylicum.

Author information

Mikrobiologie und Biotechnologie, Universität Ulm, 89069 Ulm, Germany.


Endospore formation in bacilli and clostridia shows remarkable similarities in morphology as well as in physiological and molecular biological cellular events. Major differences are the formation of clostridial stage cells and granulose accumulation in clostridia. In both genera, a cascade of sigma factors is activated after septation (by help of sigma(H) and Spo0A approximately P) in the sequence sigma(F), sigma(E), sigma(G), and sigma(K). Of these, sigma(F) and sigma(G) are active inside the forespore and are regulated by anti-sigma factors and anti-anti-sigma factors, whereas sigma(E) and sigma(K) (mother cell-specific sigma factors) are synthesized as precursor proteins and activated by proteolysis. Each of these sigma factors allows transcription of a specific set of genes and operons, thus leading to the orchestral expression of stage-specific proteins required for successful sporulation. Both, the genetic organization of the respective operons and the expression pattern of the sigma factors are very similar in Bacillus subtilis and Clostridium acetobutylicum, the model organisms of the two genera. However, a major regulatory difference is found in initiation of endospore formation. Genome sequencing revealed that clostridia do not contain components of the so-called phosphorelay, with the exception of the essential transcription factor Spo0A. This might reflect recognition of different environmental signals, as for clostridia nutrient limitation is no prerequisite for sporulation. In contrast to Bacillus, the clostridial sigH gene is constitutively expressed at a low level, with no increase at the onset of spore formation. The spo0A gene in C. acetobutylicum is also constitutively expressed, but Spo0A synthesis only occurs during the early and mid-exponential growth phase, indicating a posttranscriptional or cotranslational regulation. Mutational studies revealed an important regulatory function of a dual palindrome region upstream of the spo0A gene of C. acetobutylicum, part of which overlaps with a Spo0A-binding site. In addition to controlling sporulation genes, phosphorylated clostridial Spo0A is involved in regulation of acetone and butanol synthesis.

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center