Send to

Choose Destination
Pain. 2006 Aug;123(3):231-43. Epub 2006 May 11.

Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values.

Author information

Institute of Physiology and Pathophysiology, Johannes Gutenberg-University, Mainz, Germany.

Erratum in

  • Pain. 2006 Nov;125(1-2):197.


The nationwide multicenter trials of the German Research Network on Neuropathic Pain (DFNS) aim to characterize the somatosensory phenotype of patients with neuropathic pain. For this purpose, we have implemented a standardized quantitative sensory testing (QST) protocol giving a complete profile for one region within 30 min. To judge plus or minus signs in patients we have now established age- and gender-matched absolute and relative QST reference values from 180 healthy subjects, assessed bilaterally over face, hand and foot. We determined thermal detection and pain thresholds including a test for paradoxical heat sensations, mechanical detection thresholds to von Frey filaments and a 64 Hz tuning fork, mechanical pain thresholds to pinprick stimuli and blunt pressure, stimulus/response-functions for pinprick and dynamic mechanical allodynia, and pain summation (wind-up ratio). QST parameters were region specific and age dependent. Pain thresholds were significantly lower in women than men. Detection thresholds were generally independent of gender. Reference data were normalized to the specific group means and variances (region, age, gender) by calculating z-scores. Due to confidence limits close to the respective limits of the possible data range, heat hypoalgesia, cold hypoalgesia, and mechanical hyperesthesia can hardly be diagnosed. Nevertheless, these parameters can be used for group comparisons. Sensitivity is enhanced by side-to-side comparisons by a factor ranging from 1.1 to 2.5. Relative comparisons across body regions do not offer advantages over absolute reference values. Application of this standardized QST protocol in patients and human surrogate models will allow to infer underlying mechanisms from somatosensory phenotypes.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center