Send to

Choose Destination
Microb Ecol. 2006 Aug;52(2):345-57. Epub 2006 May 12.

The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation.

Author information

School of Life Sciences (SoLS), Arizona State University, Tempe, AZ 85287-4501, USA.


We studied the bacterial communities in biological soil crusts (BSCs) from the Colorado Plateau by enrichment and cultivation, and by statistically analyzed denaturing gradient gel electrophoresis (DGGE) fingerprinting of environmental 16S rRNA genes, and phylogenetic analyses. Three 500-m-long transects, tens of km apart, consisting of 10 equally spaced samples each, were analyzed. BSC communities consistently displayed less richness (10-32 detectable DGGE bands per sample) and Shannon diversity (2.1-3.3) than typical soil communities, with apparent dominance by few members. In spite of some degree of small-scale patchiness, significant differences in diversity and community structure among transects was detectable, probably related to the degree of crust successional maturity. Phylogenetic surveys indicated that the cyanobacterium Microcoleus vaginatus was dominant, with M. steenstrupii second among phototrophs. Among the 48 genera of nonphototrophs detected, Actinobacteria (particularly Streptomyces spp.) were very common and diverse, with 18 genera and an average contribution to the total 16S rDNA amplificate of 11.8%. beta-Proteobacteria and Bacteriodetes contributed around 10% each; Low-GC Gram-positives, alpha-Proteobacteria, Thermomicrobiales, and Acidobacteria were common (2-5%). However, the second largest contribution was made by deep-branching unaffiliated alleles (12.6%), with some of them representing candidate bacterial divisions. Many of the novel strains isolated are likely new taxa, and some were representatives of the phylotypes detected in the field. The mucoid or filamentous nature of many of these isolates speaks for their role in crust formation.

[Indexed for MEDLINE]

Publication type, MeSH terms, Secondary source ID

Publication type

MeSH terms

Secondary source ID

LinkOut - more resources

Full Text Sources

Molecular Biology Databases

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center