Send to

Choose Destination
See comment in PubMed Commons below
Dev Biol. 2006 Jul 15;295(2):764-78. Epub 2006 Apr 7.

Math5 is required for both early retinal neuron differentiation and cell cycle progression.

Author information

Division of Developmental Biology, Children's Hospital Research Foundation, Departments of Pediatrics and Ophthalmology University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-7007, USA.


CNS progenitors choose a fate, exit mitosis and differentiate. Basic helix-loop-helix (bHLH) transcription factors are key regulators of neurogenesis, but their molecular mechanisms remain unclear. In the mouse retina, removal of the bHLH factor Math5 (Atoh7) causes the loss of retinal ganglion cells (RGCs) and appearance of excess cone photoreceptors. Here, we show a simultaneous requirement for Math5 in retinal neuron formation and cell cycle progression. At embryonic day E11.5, Math5-/- cells are unable to assume the earliest fates, particularly that of an RGC, and instead adopt the last fate as Müller glia. Concurrently, the loss of Math5 causes mitotically active retinal progenitors to undergo aberrant cell cycles. The drastic fate shift of Math5-/- cells correlates with age-specific alterations in p27/Kip1 expression and an inability to become fully postmitotic. Finally, Math5 normally suppresses NeuroD1 within Math5-expressing cells and inhibits Ngn2 expression and cone photoreceptor genesis within separate cell populations. Thus, Math5 orchestrates neurogenesis in multiple ways, regulating both intrinsic and extrinsic processes.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center