Format

Send to

Choose Destination
Mol Microbiol. 2006 Jun;60(5):1123-35.

Evolution of bacteriophages infecting encapsulated bacteria: lessons from Escherichia coli K1-specific phages.

Author information

1
Abteilung Zelluläre Chemie, Zentrum Biochemie, Medizinische Hochschule Hannover, Carl-Neuberg-Street 1, 30625 Hannover, Germany.

Abstract

Bacterial capsules are not only important virulence factors, but also provide attachment sites for bacteriophages that possess capsule degrading enzymes as tailspike proteins. To gain insight into the evolution of these specialized viruses, we studied a panel of tailed phages specific for Escherichia coli K1, a neuroinvasive pathogen with a polysialic acid capsule. Genome sequencing of two lytic K1-phages and comparative analyses including a K1-prophage revealed that K1-phages did not evolve from a common ancestor. By contrast, each phage is related to a different progenitor type, namely T7-, SP6-, and P22-like phages, and gained new host specificity by horizontal uptake of an endosialidase gene. The new tailspikes emerged by combining endosialidase domains with the capsid binding module of the respective ancestor. For SP6-like phages, we identified a degenerated tailspike protein which now acts as versatile adaptor protein interconnecting tail and newly acquired tailspikes and demonstrate that this adapter utilizes an N-terminal undecapeptide interface to bind otherwise unrelated tailspikes. Combining biochemical and sequence analyses with available structural data, we provide new molecular insight into basic mechanisms that allow changes in host specificity while a conserved head and tail architecture is maintained. Thereby, the present study contributes not only to an improved understanding of phage evolution and host-range extension but may also facilitate the on purpose design of therapeutic phages based on well-characterized template phages.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center