Send to

Choose Destination
Environ Microbiol. 2006 Jun;8(6):1115-21.

Modelled and measured dynamics of viruses in Arctic winter sea-ice brines.

Author information

School of Oceanography, University of Washington, Seattle, 98195-7940, USA.


We describe a model based on diffusion theory and the temperature-dependent mechanism of brine concentration in sea ice to argue that, if viruses partition with bacteria into sea-ice brine inclusions, contact rates between the two can be higher in winter sea ice than in seawater, increasing the probability of infection and possible virus production. To examine this hypothesis, we determined viral and bacterial concentrations in select winter sea-ice horizons using epifluorescence microscopy. Viral concentrations ranged from 1.6 to 82 x 10(6) ml(-1) of brine volume of the ice, with highest values in brines from coldest (-24 to -31 degrees C) ice horizons. Calculated virus-bacteria contact rates in underlying -1 degrees C seawater were similar to those in brines of -11 degrees C ice but up to 600 times lower than those in ice brines at or below -24 degrees C. We then incubated native bacterial and viral assemblages from winter sea ice for 8 days in brine at a temperature (-12 degrees C) and salinity ( approximately 160 psu) near expected in situ values, monitoring their concentrations microscopically. While different cores yielded different results, consistent with known spatial heterogeneity in sea ice, these experiments provided unambiguous evidence for viral persistence and production, as well as for bacterial growth, in -12 degrees C brine.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center