Format

Send to

Choose Destination
See comment in PubMed Commons below
J Pharmacol Exp Ther. 2006 Aug;318(2):792-802. Epub 2006 May 10.

Alterations in the rat serum proteome during liver injury from acetaminophen exposure.

Author information

1
Proteomics Group, National Institute of Environmental Health Sciences, D2-04, P.O. Box 12233, Research Triangle Park, NC 27709, USA. merrick@niehs.nih.gov

Abstract

Changes in the serum proteome were identified during early, fulminant, and recovery phases of liver injury from acetaminophen in the rat. Male F344 rats received a single, noninjury dose or a high, injury-producing dose of acetaminophen for evaluation at 6 to 120 h. Two-dimensional gel electrophoresis of immunodepleted serum separated approximately 800 stained proteins per sample from which differentially expressed proteins were identified by mass spectrometry. Serum alanine aminotransferase/aspartate aminotransferase levels and histopathology revealed the greatest liver damage at 24 and 48 h after high-dose acetaminophen corresponding to the time of greatest serum protein alterations. After 24 h, 68 serum proteins were significantly altered of which 23 proteins were increased by >5-fold and 20 proteins were newly present compared with controls. Only minimal changes in serum proteins were noted at the low dose without any histopathology. Of the 54 total protein isoforms identified by mass spectrometry, gene ontology processes for 38 unique serum proteins revealed involvement of acute phase response, coagulation, protein degradation, intermediary metabolism, and various carrier proteins. Elevated serum tumor necrosis factor-alpha from 24 to 48 h suggested a mild inflammatory response accompanied by increased antioxidant capability demonstrated by increased serum catalase activity. Antibody array and enzyme-linked immunosorbent assay analyses also showed elevation in the chemokine monocyte chemoattractant protein-1 and the metalloprotease inhibitor tissue inhibitor of metalloproteinases-1 during this same period of liver injury. This study demonstrates that serum proteome alterations probably reflect both liver damage and a concerted, complex response of the body for organ repair and recovery during acute hepatic injury.

PMID:
16687475
PMCID:
PMC1892200
DOI:
10.1124/jpet.106.102681
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center