A pseudoatom approach to molecular truncation: application in ab initio MBPT methods

J Phys Chem A. 2006 May 18;110(19):6279-84. doi: 10.1021/jp055149h.

Abstract

In this paper, we test the performance of the molecular truncation method of Mallik et al., which was originally applied at the semiempirical NDDO level, in ab initio MBPT methods. Pseudoatoms developed for the replacement of -OCH(3) and -OCH(2)CH(3) functional groups are used in optimizations of selected clusters, and the resulting geometries are compared to reference values taken from the full molecules. It is shown that the pseudoatoms, which consist of parametrized effective core potentials for the nearest neighbor interactions and an external charge field for long-range Coulomb effects, perform well at the MP2 and CCSD levels of theory for the suite of molecules to which they were applied. Representative timings for some of the pseudoatom-terminated clusters are presented, and it is seen that there is a significant reduction in computational time, yet the geometric configurations and deprotonation energies of the pseudoatom-terminated clusters are comparable to the more computationally expensive all-atom molecules.