Send to

Choose Destination
Osteoarthritis Cartilage. 2006 Oct;14(10):1011-22. Epub 2006 May 5.

Mitochondrial activity is modulated by TNFalpha and IL-1beta in normal human chondrocyte cells.

Author information

Osteoarticular and Aging Research Unit, Rheumatology Division, CH Universitario Juan Canalejo, Xubias 84, 15006-A Coruña, Spain.



Pro-inflammatory cytokines play an important role in osteoarthritis (OA). In osteoarthritic cartilage, chondrocytes exhibit an alteration in mitochondrial activity. This study analyzes the effect of tumor necrosis factor-alpha (TNFalpha) and interleukin-1beta (IL-1beta) on the mitochondrial activity of normal human chondrocytes.


Mitochondrial function was evaluated by analyzing the activities of respiratory chain enzyme complexes and citrate synthase, as well as by mitochondrial membrane potential (Deltapsim) and adenosine triphosphate (ATP) synthesis. Bcl-2 family mRNA expression and protein synthesis were analyzed by RNase protection assay (RPA) and Western-blot, respectively. Cell viability was analyzed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and apoptosis by 4', 6-diamidino-2-phenylindole dihydrochloride (DAPI) stain. Glycosaminoglycans were quantified in supernatant by a dimethyl-methylene blue binding assay.


Compared to basal cells, stimulation with TNFalpha (10 ng/ml) and IL-1beta (5 ng/ml) for 48 h significantly decreased the activity of complex I (TNFalpha=35% and IL-1beta=35%) and the production of ATP (TNFalpha=18% and IL-1beta=19%). Both TNFalpha and IL-1beta caused a definitive time-dependent decrease in the red/green fluorescence ratio in chondrocytes, indicating depolarization of the mitochondria. Both cytokines induced mRNA expression and protein synthesis of the Bcl-2 family. Rotenone, an inhibitor of complex I, caused a significant reduction of the red/green ratio, but it did not reduce the viability of the chondrocytes. Rotenone also increased Bcl-2 mRNA expression and protein synthesis. Finally, rotenone as well as TNFalpha and IL-1beta, reduced the content of proteoglycans in the extracellular matrix of normal cartilage.


These results show that both TNFalpha and IL-1beta regulate mitochondrial function in human articular chondrocytes. Furthermore, the inhibition of complex I by both cytokines could play a key role in cartilage degradation induced by TNFalpha and IL-1beta. These data could be important for understanding of the OA pathogenesis.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center