Send to

Choose Destination
Life Sci. 2006 Aug 8;79(11):1040-8. Epub 2006 Mar 24.

Advanced glycation end-products induce apoptosis involving the signaling pathways of oxidative stress in bovine retinal pericytes.

Author information

Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.


One of the histopathologic hallmarks of early diabetic retinopathy is the selective loss of pericytes. Evidences suggest that the pericyte loss in vivo is mediated by apoptosis. However, the underlying cause of pericyte apoptosis is not fully understood. This study investigated the effect of advanced glycation end products (AGEs) on apoptotic cell death in bovine retinal pericytes (BRPs). After incubation of BRPs with 0.47, 1.88, 7.5, 30 microM of AGE-bovine serum albumin (BSA) for 4 days, we assayed the pericytes apoptosis by FACS (fluorescence activated cell sorting), and further measured the signaling pathway involved. The results showed that AGE-BSA could induce significantly the apoptosis of BRPs in a dose-dependent manner compared with controls, associated with an increase in intracellular malondialdehyde level and caspase-3 activity; a decrease in intracellular catalase, SOD activities and Bcl-2/Bax ratio. SOD and selective caspase-3 inhibitor Z-DEVD-fmk can inhibit pericyte apoptosis induced by AGE-BSA. These data suggest that the pericyte loss in diabetic retinopathy involves an apoptotic process, and that elevated AGE observed in diabetes may cause apoptosis in BRPs through an oxidative stress mechanism. The decreased Bcl-2/Bax ratio and activation of caspase-3 are associated with apoptotic process.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center