Send to

Choose Destination
J Phys Chem A. 2006 May 11;110(18):6145-56.

Mechanisms of glycerol dehydration.

Author information

National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA.


Dehydration of neutral and protonated glycerol was investigated using quantum mechanical calculations (CBS-QB3). Calculations on neutral glycerol show that there is a high barrier for simple 1,2-dehydration, E(a)=70.9 kcal mol(-1), which is lowered to 65.2 kcal mol(-1) for pericyclic 1,3-dehydration. In contrast, the barriers for dehydration of protonated glycerol are much lower. Dehydration mechanisms involving hydride transfer, pinacol rearrangement, or substitution reactions have barriers between 20 and 25 kcal mol(-1). Loss of water from glycerol via substitution results in either oxirane or oxetane intermediates, which can inter-convert over a low barrier. Subsequent decomposition of these intermediates proceeds via either a second dehydration step or loss of formaldehyde. The computed mechanisms for decomposition of protonated glycerol are supported by the gas-phase fragmentation of protonated glycerol observed using a triple--quadrupole mass spectrometer.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center