Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1991 Dec;97(4):1302-5.

Role of the root apoplasm for iron acquisition by wheat plants.

Author information

1
Institut für Pflanzenernährung, Universität Hohenheim, Postfach 70 05 62, 7000 Stuttgart 70, Germany.

Abstract

The role of the root apoplasm for iron acquisition was studied in wheat (Triticum aestivum L. cv Ares) grown in nutrient solution under controlled environmental conditions. To obtain different levels of Fe in the root apoplasm, plants were supplied in the dark for 5 hours (preloading period) with various (59)Fe-labeled Fe compounds [Fe(III) hydroxide; microbial siderophores: Fe rhodotorulic acid (FeRDA) and ferrioxamin (FeDesferal(3)), and synthetic Fe chelate (FeEDDHA)], each at a concentration of 5 micromolar. Large pools of apoplasmic Fe were formed after supplying Fe(III) hydroxide or FeRDA, but no such pools were observed after supplying FeDesferal or FeEDDHA. Depending on plant Fe nutritional status (preculture +/- 0.1 millimolar FeEDTA), apoplasmic Fe was used to different extent for translocation to the shoot. Under Fe deficiency, a much greater fraction of the apoplasmic Fe was utilized than in Fe-sufficient plants, as a result of the different rates of phytosiderophore release. Because of the diurnal rhythm in release of phytosiderophores in Fe-deficient plants, the utilization of the apoplasmic Fe for translocation into the shoot started 2 hours after onset of the light period and was dependent on the concentration of Fe in the apoplasm, which followed the order: Fe(III) hydroxide >> FeRDA >> FeDesferal = FeEDDHA. From these results, it can be concluded that in soil-grown plants the apoplasmic Fe pool loaded by various indigenous Fe compounds such as siderophores in the soil solution can be an important Fe source in graminaceous species, particularly during periods of limited Fe supply from the soil.

PMID:
16668547
PMCID:
PMC1081162
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center