Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1989 Jul;90(3):1057-64.

Calvin-Benson Cycle Enzymes in Guard-Cell Protoplasts from Vicia faba L: Implications for the Greater Utilization of Phosphoglycerate/Dihydroxyacetone Phosphate Shuttle between Chloroplasts and the Cytosol.

Author information

Division of Environmental Biology, The National Institute for Environmental Studies, Tsukuba, Ibaraki 305, Japan.


Activities of Calvin-Benson cycle enzymes were found in protoplasts of guard cells from Vicia faba L. The activities of NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPD) and ribulose-1,5-bisphosphate carboxylase (RuBPC) were 2670 and 52 micromoles per milligrams chlorophyll per hour, respectively. Activities of NADP-GAPD and RuBPC in guard cells were increased by red light illumination, and the light activations were inhibited completely by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosystem II. Enzymes related to the Calvin-Benson cycle such as 3-phosphoglycerate kinase (PGAK), triose phosphate (TP) isomerase, and fructose-1,6-bisphosphatase (FBPase) were shown to be present in guard-cell chloroplasts. From these results, we conclude that the photosynthetic carbon reduction pathway is present in guard-cell chloroplasts of Vicia faba. We compared these enzyme activities in guard cells with those in mesophyll cells. The activities of NADP-GAPD and PGAK were more than several-fold higher and that of TP isomerase was much higher in guard-cell chloroplasts than in mesophyll chloroplasts. In contrast, activities of RuBPC and FBPase were estimated to be roughly half of those in mesophyll chloroplasts. High activities of PGAK, NAD-GAPD, and TP isomerase were found in fractions enriched in cytosol of guard cells. Illumination of guard-cell protoplasts with red light increased the cellular ATP/ADP ratio from 5 to 14. These results support the interpretation that guard cells utilize a shuttle system (e.g. phosphoglycerate [PGA]/dihydroxyacetone phosphate [DHAP] shuttle) for an indirect transfer of ATP and reducing equivalents from chloroplasts to the cytosol.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center