Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1988 Feb;86(2):591-7.

Dual Effect of Light on the Gibberellin- and Nitrate-Stimulated Seed Germination of Sisymbrium officinale and Arabidopsis thaliana.

Author information

1
Department of Plant Physiology, Agricultural University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands.

Abstract

Red light (R) has a dual effect on the seed germination of the two related species Arabidopsis thaliana and Sisymbrium officinale. The two species provide different means to separate the light-effects. In S. officinale, stimulation of germination by R depends on the stimultaneous presence of nitrate (light-effect I). The effect of both factors is completely blocked by tetcyclacis, an inhibitor of gibberellin (GA)-biosynthesis. Addition of a mixture of gibberellins A(4) and A(7) (GA(4+7)) antagonizes the inhibition. In the absence of nitrate, R shifts germination to lower GA-requirement (light-effect II). In A. thaliana a similar second light-effect is seen on the GA-requirement of GA-deficient ga-1 mutant seeds. R stimulates germination of wild type seeds in water (light-effect I). For both species, light-effect I shows a fluence threshold value of approximately 10(-5) moles per square meter, which is independent of the nitrate concentration. Increasing nitrate concentrations narrow the fluence-range required for maximal germination whereby the product of nitrate concentration and fluence value determines the germination level, indicating a multiplicative interaction between R and nitrate. Fluence-response curves for light-effect II are similar for both species. Germination occurs in the range of 10(-6) to 10(-2) moles per square meter fluence. The maximal level of germination is determined by the level of dark-germination and light-effect II. Increasing GA(4+7) concentrations induce a shift to lower fluence values. It is shown that in the second effect the co-action of R and exogenous GA(4+7) is clearly additive. It is concluded that light-effect I induces a chain of events leading to GA biosynthesis. Light-effect II seems to enhance the sensitivity of the seeds to GAs.

PMID:
16665951
PMCID:
PMC1054528
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center