Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1987 Apr;83(4):1032-6.

Investigation of the CO(2) Dependence of Quantum Yield and Respiration in Eucalyptus pauciflora.

Author information

  • 1Department of Environmental Biology, Research School of Biological Sciences, Australian National University, G.P.O. Box 475, Canberra, A.C.T. 2601, Australia.


In leaves of C(3) plants, the rate of nonphotorespiratory respiration appears to be higher in darkness than in the light. This change from a high to a low rate of carbon loss with increasing photon flux density leads to an increase in the apparent quantum yield of photosynthetic CO(2) assimilation at low photon flux densities (Kok effect). The mechanism of this suppression of nonphotorespiratory respiration is not understood, but biochemical evidence and the observation that a Kok effect is often not observed under low O(2), has led to the suggestion that photorespiration might be involved in some way. This hypothesis was tested with snowgum (Eucalyptus pauciflora Sieb. ex Spreng.) using gas exchange methods. The test was based on the assumption that if photorespiration were involved, then it would be expected that the intercellular partial pressure of CO(2) would also have an influence on the Kok effect. Under normal atmospheric levels of CO(2) and O(2), a Kok effect was found. Changing the intercellular partial pressure of CO(2), however, did not affect the estimate of nonphotorespiratory respiraton, and it was concluded that its decrease with increasing photon flux density did not involve photorespiration. Concurrent measurements showed that the quantum yield of net assimilation of CO(2) increased with increasing intercellular partial pressure of CO(2), and this increase agreed closely with predictions based on recent models of photosynthesis.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center