Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1983 Apr;71(4):719-30.

Regulation of Cell Shape in Euglena gracilis: I. Involvement of the Biological Clock, Respiration, Photosynthesis, and Cytoskeleton.

Author information

1
Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148.

Abstract

The alga Euglena gracilis Z. changes its shape two times per day when grown under the synchronizing effect of a daily light-dark cycle. At the beginning of the light period when photosynthetic capacity is low, the population of cells is largely spherical in shape. The mean cell length of the population increases to a maximum in the middle of the light period when photosynthetic capacity is greatest, and then decreases for the remainder of the 24-hour period. The population becomes spherical by the end of the 24-hour period when the cycle reinitiates. These changes are also observed under constant dim light conditions (up to 72 hours) and are therefore controlled by the biological clock and represent a circadian rhythm in cell shape. In constant dim light, the cell division rhythm is either arrested or slowed considerably, while the cell shape rhythm continues.The involvement of respiratory and photosynthetic pathways in the cell shape changes was investigated with energy pathway inhibitors. Antimycin A and NaN(3) both inhibited the round to long and long to round shape changes, indicating that the respiratory pathways are involved. DCMU and atrazine inhibited the round to long shape change but did not affect the long to round transition, indicating that light-induced electron flow is necessary only for the round to long shape change.The influence of the cell shape changes on the photosynthetic reactions was investigated by altering cell shape with the cytoskeletal inhibitors cytochalasin and colchicine. Both inhibitors blocked the round to long and long to round shape changes. Cytochalasin B was found to have minimal cytotoxic effects on the photosynthetic reactions, but colchicine significantly inhibited light-induced electron flow and the in vivo expression of the photosynthetic rhythm.

PMID:
16662896
PMCID:
PMC1066111
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center