Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1973 Feb;51(2):267-72.

Simultaneous Influx and Efflux of Nitrate during Uptake by Perennial Ryegrass.

Author information

  • 1Department of Soil Science, North Carolina State University, Raleigh, North Carolina 27607.


Experiments with intact plants of Lolium perenne previously grown with (14)NO(3) (-) revealed significant efflux of this isotopic species when the plants were transferred to solutions of highly enriched (15)NO(3) (-). The exuded (14)NO(3) (-) was subsequently reabsorbed when the ambient solutions were not replaced. When they were frequently replaced, continual efflux of the (14)NO(3) (-) was observed. Influx of (15)NO(3) (-) was significantly greater than influx of (14)NO(3) (-) from solutions of identical NO(3) (-) concentration. Transferring plants to (14)NO(3) (-) solutions after a six-hour period in (15)NO(3) (-) resulted in efflux of the latter. Presence of Mg(2+), rather than Ca(2+), in the ambient (15)NO(3) (-) solution resulted in a decidedly increased rate of (14)NO(3) (-) efflux and a slight but significant increase in (15)NO(3) (-) influx. Accordingly, net NO(3) (-) influx was slightly depressed. A model in accordance with these observations is presented; its essential features include a passive bidirectional pathway, an active uptake mechanism, and a pathway for recycling of endogenous NO(3) (-) within unstirred layers from the passive pathway to the active uptake site.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center