Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1966 Mar;41(3):544-52.

Effect of Salts and Electron Transport on the Conformation of Isolated Chloroplasts. II. Electron Microscopy.

Author information

1
Department of Botany and Plant Pathology, Michigan State University, East Lansing, Michigan.

Abstract

Spinach chloroplasts isolated in media containing salts and the rare chloroplasts which are still within their envelopes alike retain grana similar to those seen in chloroplasts in situ.Chloroplasts isolated in low-salt media lose their grana without losing any chlorophyll. These grana-free chloroplasts are considerably swollen and consist almost entirely of continuous sheets of paired-membrane structures. These double structures, the lamellae, are only loosely held together, primarily at the edges, by tenuous material which does not react with permanganate.Addition of salts (methylamine hydrochloride, NaCl, MgCl(2)) to the grana-free low-salt chloroplasts provide strong interlamellar attractions. These attractions result in a stacking of the lamellae which is sometimes almost random but sometimes results in regular structures indistinguishable from the original grana.The phosphorylation-uncoupler atebrin causes further swelling of the chloroplasts in the absence of electron transport by increasing the space between the paired membranes of the lamellae.The rapid electron transport (Hill reaction) made possible by atebrin-uncoupling is associated with a great decrease in chloroplast volume. This decrease results from a collapsing together of the widely separated lamellar membrane pairs. The pairs approach each other so closely that they usually appear as a single membrane when viewed with the electron microscope. The much slower electron transport which occurs in the absence of uncouplers is associated with a similar but smaller decrease in the space between the lamellar membrane pairs.Chloroplasts swell during the rapid electron transport made possible by the phosphorylation-uncoupler methylamine. This swelling is accompanied by a degree of membrane distortion which precludes an interpretation of the mechanism. As with atebrin-faciliated electron transport, obviously paired membranes disappear but it is not yet clear whether this is by association or dissociation of the pairs.

PMID:
16656286
PMCID:
PMC1086379
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center