Send to

Choose Destination
See comment in PubMed Commons below
Circulation. 2006 May 9;113(18):2229-37. Epub 2006 May 1.

Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells.

Author information

  • 1Department of Tissue Engineering, Beijing Institute of Basic Medical Sciences, Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China.



Embryonic stem (ES) cells can terminally differentiate into all types of somatic cells and are considered a promising source of seed cells for tissue engineering. However, despite recent progress in in vitro differentiation and in vivo transplantation methodologies of ES cells, to date, no one has succeeded in using ES cells in tissue engineering for generation of somatic tissues in vitro for potential transplantation therapy.


ES-D3 cells were cultured in a slow-turning lateral vessel for mass production of embryoid bodies. The embryoid bodies were then induced to differentiate into cardiomyocytes in a medium supplemented with 1% ascorbic acid. The ES cell-derived cardiomyocytes were then enriched by Percoll gradient centrifugation. The enriched cardiomyocytes were mixed with liquid type I collagen supplemented with Matrigel to construct engineered cardiac tissue (ECT). After in vitro stretching for 7 days, the ECT can beat synchronously and respond to physical and pharmaceutical stimulation. Histological, immunohistochemical, and transmission electron microscopic studies further indicate that the ECTs both structurally and functionally resemble neonatal native cardiac muscle. Markers related to undifferentiated ES cell contamination were not found in reverse transcriptase-polymerase chain reaction analysis of the Percoll-enriched cardiomyocytes. No teratoma formation was observed in the ECTs implanted subcutaneously in nude mice for 4 weeks.


ES cells can be used as a source of seed cells for cardiac tissue engineering. Additional work remains to demonstrate engraftment of the engineered heart tissue in the case of cardiac defects and its functional integrity within the host's remaining healthy cardiac tissue.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center