Format

Send to

Choose Destination
See comment in PubMed Commons below
Nat Med. 2006 May;12(5):568-73. Epub 2006 Apr 30.

Mig6 is a negative regulator of EGF receptor-mediated skin morphogenesis and tumor formation.

Author information

1
Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, Klopferspitz 18, 82152 Martinsried, Germany.

Erratum in

  • Nat Med. 2006 Jul;12(7):862.

Abstract

The growing number of recently identified negative feedback regulators of receptor tyrosine kinases (RTKs) highlights the importance of signal attenuation and modulation for correct signaling outcome. Mitogen-inducible gene 6 (Mig6 also known as RALT or Gene 33) is a multiadaptor protein thought to be involved in the regulation of RTK and stress signaling. Here, we show that deletion of the mouse gene encoding Mig6 (designated Errfi1, which stands for ERBB receptor feedback inhibitor 1) causes hyperactivation of endogenous epidermal growth factor receptor (EGFR) and sustained signaling through the mitogen-activated protein kinase (MAPK) pathway, resulting in overproliferation and impaired differentiation of epidermal keratinocytes. Furthermore, Errfi1-/- mice develop spontaneous tumors in various organs and are highly susceptible to chemically induced formation of skin tumors. A tumor-suppressive role for Mig6 is supported by our finding that MIG6 is downregulated in various human cancers. Inhibition of endogenous Egfr signaling with the Egfr inhibitor gefitinib (Iressa) or replacement of wild-type Egfr with the kinase-deficient protein encoded by the hypomorphic Egfr(wa2) allele completely rescued skin defects in Erffi1-/- mice. Carcinogen-induced tumors displayed by Errfi1-/- mice were highly sensitive to gefitinib. These results indicate that Mig6 is a specific negative regulator of Egfr signaling in skin morphogenesis and is a novel tumor suppressor of Egfr-dependent carcinogenesis.

PMID:
16648858
DOI:
10.1038/nm1401
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center