Format

Send to

Choose Destination
See comment in PubMed Commons below
Microb Ecol. 2006 May;51(4):441-52. Epub 2006 Apr 28.

Distribution of extensive nifH gene diversity across physical soil microenvironments.

Author information

1
Department of Microbiology, University of Massachusetts, Amherst, MA, USA. javier@microbio.umass.edu

Abstract

The diversity of nitrogen-fixing bacteria is well described for aquatic environments; however, terrestrial analyses remain mostly biased to rhizobial plant-microbe associations. We maximized the level of resolution for this study through the use of nucleotide sequence information extracted from a series of soil microenvironments, ranging from macroaggregates at 2000 microm to the clay fraction at < 75 microm in diameter. In addition, we attempted to create an overview of the distribution of terrestrial nitrogen fixers across such microenvironments by combining culture-independent techniques with a suite of natural soil environments from uniquely different origins. Soil diazotroph diversity was analyzed phylogenetically for 600 terrestrial nifH sequences from 12 midsized clone libraries based on microenvironments of three separate soils across a global scale. Statistical analyses of nifH gene clone libraries were used to estimate coverage, establish degrees of sequence overlap, and compare cluster distributions. These analyses revealed an extensive diversity in a tropical (19 phylotypes) and an arctic soil (17 phylotypes), and moderate diversity in a temperate soil (11 phylotypes). Within each soil, comparisons across aggregate size fractions delineated nifH gene cluster shifts within populations and degrees of sequence overlap that ranged from significantly different (arctic, tropical) to significantly similar (temperate). We suggest that this is due to population separation across aggregates of different size classes, which results from differences in the temporal stability of aggregates as niches for microbial communities. This study not only provides new knowledge of the arrangement of diazotrophic communities at the soil microscale, but it also contributes to the underrepresented knowledge of soil nifH sequences in the public databases.

PMID:
16645928
DOI:
10.1007/s00248-006-9044-x
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center