Format

Send to

Choose Destination
See comment in PubMed Commons below
Pediatr Infect Dis J. 2006 May;25(5):410-4.

T280M variation of the CX3C receptor gene is associated with increased risk for severe respiratory syncytial virus bronchiolitis.

Author information

1
Laboratory of Clinical Virology, Medical School, University of Crete, Greece.

Abstract

BACKGROUND:

Recent data suggest that immunologic response during respiratory syncytial virus (RSV) infection is partially modified through interaction of viral G glycoprotein with the host's chemokine receptor, CX3CR1. We hypothesized that two nonsynonymous, single-nucleotide polymorphisms of the CX3CR1 gene (CX3CR1-V249I and CX3CR1-T280M) that disrupt the affinity of CX3CR1 for its natural ligand (fractalkine) could also affect the G glycoprotein-CX3CR1 pathway.

METHODS:

To test the hypothesis, DNA samples were obtained from 82 children hospitalized for RSV bronchiolitis in a 1-year period. One hundred twenty sex-matched healthy adults, without a history of severe lower respiratory tract infections, formed the control group.

RESULTS:

Epidemiologic data showed an increase in the RSV infection rate during the late winter season, with a peak rate in early spring. Genotyping revealed predominance of the 280M-containing genotypes (M/M or T/M) in cases compared with controls (37.8% versus 20.8%, respectively; odds ratio, 2.03; 95% confidence interval, 1.1-3.9; P = 0.025), demonstrating an association between the common CX3CR1-T280M variations and increased risk of severe RSV bronchiolitis.

CONCLUSIONS:

Our findings support the hypothesis of the pivotal role of the G glycoprotein CX3CR1 pathway in the pathogenesis of RSV bronchiolitis and propose CX3CR1 as a potential therapeutic target.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins - Ovid Insights
    Loading ...
    Support Center