Send to

Choose Destination
See comment in PubMed Commons below
Comp Biochem Physiol B Biochem Mol Biol. 2006 Jun;144(2):206-14. Epub 2006 Mar 6.

Astaxanthin binding protein in Atlantic salmon.

Author information

  • 1Department of Food Science and Technology, Dalhousie University, P.O. Box 1000, Halifax, Nova Scotia, Canada B3J 2X4.


The rubicund pigmentation in salmon and trout flesh is unique and is due to the deposition of dietary carotenoids, astaxanthin and canthaxanthin in the muscle. The present study was undertaken to determine which protein was responsible for pigment binding. Salmon muscle proteins were solubilized by sequential extractions with non-denaturing, low ionic strength aqueous solutions and segregated as such into six different fractions. Approximately 91% of the salmon myofibrillar proteins were solubilized under non-denaturing conditions using a protocol modified from a method described by Krishnamurthy et al. [Krishnamurthy, G., Chang, H.S., Hultin, H.O., Feng, Y., Srinivasan, S., Kelleher. S.D., 1996. Solubility of chicken breast muscle proteins in solutions of low ionic strength. J. Agric. Food Chem. 44: 408-415.] for the dissolution of avian muscle. To our knowledge, this is the first time this solubilization approach has been applied to the study of molecular interactions in myofibrillar proteins. Astaxanthin binding in each fraction was determined using an in vitro binding assay. In addition, SDS-PAGE and quantitative densitometry were used to separate and determine the relative amounts of each of the proteins in the six fractions. The results showed that alpha-actinin was the only myofibrillar protein correlating significantly (P<0.05) with astaxanthin binding. Alpha-actinin was positively identified using electrophoretic techniques and confirmed by tandem mass spectroscopy. Purified salmon alpha-actinin bound synthetic astaxanthin in a molar ratio of 1.11:1.00. The study was repeated using halibut alpha-actinin, which was found to have a molar binding ratio of astaxanthin to alpha-actinin of 0.893:1. These results suggest that the difference in pigmentation between white fish and Atlantic salmon is not due to binding capacity in the muscle, but rather differences in the metabolism or transport of pigment.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center