Format

Send to

Choose Destination
See comment in PubMed Commons below
Neurobiol Dis. 2006 Jul;23(1):97-108. Epub 2006 Apr 27.

Senataxin, the yeast Sen1p orthologue: characterization of a unique protein in which recessive mutations cause ataxia and dominant mutations cause motor neuron disease.

Author information

1
Department of Pediatrics, Division of Genetics and Developmental Medicine, University of Washington School of Medicine, Seattle, WA 63110, USA.

Abstract

A severe recessive cerebellar ataxia, Ataxia-Oculomotor Apraxia 2 (AOA2) and a juvenile onset form of dominant amyotrophic lateral sclerosis (ALS4) result from mutations of the Senataxin (SETX) gene. To begin characterization this disease protein, we developed a specific antibody to the DNA/RNA helicase domain of SETX. In murine brain, SETX concentrates in several regions, including cerebellum, hippocampus and olfactory bulb with a general neuronal expression profile, colocalizing with NeuN. In cultured cells, we found that SETX was cytoplasmically diffuse, but in the nucleus, SETX was punctate, colocalizing with fibrillarin, a marker of the nucleolus. In differentiated non-cycling cells, nuclear SETX was not restricted to the nucleolus but was diffuse within the nucleoplasm, suggesting cell-cycle-dependent localization. SETX missense mutations cluster within the N-terminus and helicase domains. Flag tagging at the N-terminus caused protein mislocation to the nucleoplasm and failure to export to the cytoplasm, suggesting that the N-terminus may be essential for correct SETX localization. We report here the first characterization of SETX protein, which may provide future insights into a new mechanism leading to neuron death.

PMID:
16644229
DOI:
10.1016/j.nbd.2006.02.007
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center