Send to

Choose Destination
Hypertension. 2006 Jun;47(6):1183-8. Epub 2006 Apr 24.

Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells.

Author information

Department of Endocrinology and Metabolism, Dokkyo University School of Medicine, Mibu, Tochigi 321-0293, Japan.


AMP-activated protein kinase (AMPK) is tightly regulated by the cellular AMP:ATP ratio and plays a central role in regulation of energy homeostasis and metabolic stress. Metformin has been shown to activate AMPK. We hypothesized that metformin may prevent nuclear factor kappaB (NF-kappaB) activation in endothelial cells exposed to inflammatory cytokines. Metformin was observed to activate AMPK, as well as its downstream target, phosphoacetyl coenzyme A carboxylase, in human umbilical vein endothelial cells (HUVECs). Metformin also dose-dependently inhibited tumor necrosis factor (TNF)-alpha-induced NF-kappaB activation and TNF-alpha-induced IkappaB kinase activity. Furthermore, metformin attenuated the TNF-alpha-induced gene expression of various proinflammatory and cell adhesion molecules, such as vascular cell adhesion molecule-1, E-selectin, intercellular adhesion molecule-1, and monocyte chemoattractant protein-1, in HUVECs. A pharmacological activator of AMPK, 5-amino-4-imidazole carboxamide riboside (AICAR), dose-dependently inhibited TNF-alpha- and interleukin-1beta-induced NF-kappaB reporter gene expression. AICAR also suppressed the TNF-alpha- and interleukin-1beta-induced gene expression of vascular cell adhesion molecule-1, E-selectin, intercellular adhesion molecule-1, and monocyte chemoattractant protein-1 in HUVECs. The small interfering RNA for AMPKalpha1 attenuated metformin or AICAR-induced inhibition of NF-kappaB activation by TNF-alpha, suggesting a possible role of AMPK in the regulation of cell inflammation. In light of these findings, we suggest that metformin attenuates the cytokine-induced expression of proinflammatory and adhesion molecule genes by inhibiting NF-kappaB activation via AMPK activation. Thus, it might be useful to target AMPK signaling in future efforts to prevent atherogenic and inflammatory vascular disease.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center