Format

Send to

Choose Destination
J Biol Chem. 2006 Jun 30;281(26):17689-98. Epub 2006 Apr 21.

Ubiquitous calpains promote both apoptosis and survival signals in response to different cell death stimuli.

Author information

1
Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Botterall Hall Rm. A309, Kingston, Ontario K7L-3N6, Canada.

Abstract

The mu- and m-calpain proteases have been implicated in both pro- or anti-apoptotic functions. Here we compared cell death responses and apoptotic or survival signaling pathways in primary mouse embryonic fibroblasts (MEFs) derived from wild type or capn4 knock-out mice which lack both mu- and m-calpain activities. Capn4(-/-) MEFs displayed resistance to puromycin, camptothecin, etoposide, hydrogen peroxide, ultraviolet light, and serum starvation, which was consistent with pro-apoptotic roles for calpain. In contrast, capn4(-/-) MEFs were more susceptible to staurosporine (STS) and tumor necrosis factor alpha-induced cell death, which provided evidence for anti-apoptotic signaling roles for calpain. Bax activation, release of cytochrome c, and activation of caspase-9 and caspase-3 all correlated with the observed cell death responses of wild type or capn4(-/-) MEFs to the various challenges, suggesting that calpain might play distinct roles in transducing different death signals to the mitochondria. There was no evidence that calpain cleaved Bcl-2 family member proteins that regulate mitochondrial membrane permeability including Bcl-2, Bcl-xl, Bad, Bak, Bid, or Bim. However, activation of the phosphatidylinositol 3 (PI3)-kinase/Akt survival signaling pathway was compromised in capn4(-/-) MEFs under all challenges regardless of the cell death outcome, and blocking Akt activation using the PI3-kinase inhibitor LY294002 abolished the protective effect of calpain to STS challenge. We conclude that the anti-apoptotic function of calpain in tumor necrosis factor alpha- and STS-challenged cells relates to a novel role in activating the PI3-kinase/Akt survival pathway.

PMID:
16632474
DOI:
10.1074/jbc.M601978200
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center