Send to

Choose Destination
Free Radic Biol Med. 2006 May 1;40(9):1603-14. Epub 2006 Jan 26.

Grape seed proanthocyanidins inhibit UV-radiation-induced oxidative stress and activation of MAPK and NF-kappaB signaling in human epidermal keratinocytes.

Author information

Department of Dermatology, University of Alabama at Birmingham, Volker Hall 557, 1670 University Boulevard, P.O. Box 202, Birmingham, AL 35294, USA.


Solar ultraviolet (UV) radiation-induced oxidative stress has been implicated in various skin diseases. Here, we report the photoprotective effect of grape seed proanthocyanidins (GSPs) on UV-induced oxidative stress and activation of mitogen-activated protein kinase (MAPK) and NF-kappaB signaling pathways using normal human epidermal keratinocytes (NHEK). Treatment of NHEK with GSPs inhibited UVB-induced hydrogen peroxide (H2O2), lipid peroxidation, protein oxidation, and DNA damage in NHEK and scavenged hydroxyl radicals and superoxide anions in a cell-free system. GSPs also inhibited UVB-induced depletion of antioxidant defense components, such as glutathione peroxidase, catalase, superoxide dismutase, and glutathione. As UV-induced oxidative stress mediates activation of MAPK and NF-kappaB signaling pathways, we determined the effects of GSPs on these pathways. Treatment of NHEK with GSPs inhibited UVB-induced phosphorylation of ERK1/2, JNK, and p38 proteins of the MAPK family at the various time points studied. As UV-induced H2O2 plays a major role in activation of MAPK proteins, NHEK were treated with H2O2 with or without GSPs and other known antioxidants, viz. (-)-epigallocatechin-3-gallate, silymarin, ascorbic acid, and N-acetylcysteine. It was observed that H2O2-induced phosphorylation of ERK1/2, JNK, and p38 was decreased by these antioxidants. Under identical conditions, GSPs also inhibited UVB-induced activation of NF-kappaB/p65, which was mediated through inhibition of degradation and activation of IkappaBalpha and IKKalpha, respectively. Together, these results suggest that GSPs could be useful in the attenuation of UV-radiation-induced oxidative stress-mediated skin diseases in human skin.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center