Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2006 May 2;103(18):7012-7. Epub 2006 Apr 20.

Dysregulation of signaling pathways in CD45-deficient NK cells leads to differentially regulated cytotoxicity and cytokine production.

Author information

  • 1Department of Microbiology and Immunology and Cancer Research Institute, University of California, San Francisco, CA 94143, USA.


CD45, a protein tyrosine phosphatase that regulates Src family kinases, is important for regulating T cell and B cell receptor signaling; however, little is known about how CD45 regulates immunoreceptor tyrosine-based activation motif (ITAM)-dependent natural killer (NK) cell receptor signaling and the resulting effector functions. NK cells from CD45-deficient mice are relatively competent for ITAM receptor-induced cell-mediated cytotoxicity, yet completely deficient for cytokine secretion after stimulation with ligands to or antibodies against NK1.1, CD16, Ly49H, Ly49D, and NKG2D. This deficiency in cytokine/chemokine production occurs at the level of mRNA expression. After receptor engagement, extracellular signal-regulated kinase and c-Jun N-terminal kinase activation was markedly perturbed, whereas p38 activation was not substantially affected. The pattern and amounts of basal tyrosine phosphorylation were altered in freshly isolated NK cells and were surprisingly and markedly increased in IL-2-expanded NK cells from CD45-/- mice. These findings indicate that CD45-dependent regulation of ITAM-dependent signaling pathways is essential for NK cell-mediated cytokine production but not cytolytic activity.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center