Format

Send to

Choose Destination
Virus Res. 1991 Oct;21(2):111-22.

Coupled mutations in the 5'-untranslated region of the Sabin poliovirus strains during in vivo passages: structural and functional implications.

Author information

1
Institute of Poliomyelitis and Viral Encephalitides, USSR Academy of Medical Sciences, Moscow.

Abstract

All entero- and rhinovirus RNAs sequenced thus far possess A and U residues at positions corresponding to nucleotides 480 and 525, respectively, of poliovirus type 1. These two nucleotides have been proposed previously to form a base pair. The single exception to this rule appears to be the Sabin type 1 strain, which has a G480. Isolates of the Sabin 1 virus from healthy vaccinees were shown to have either a reversion to A480 or a second-site mutation U525----C, both restoring a potential for efficient base pairing. In vitro translation experiments demonstrated that poliovirus type 1 RNAs with either A480-U525 or G480-C525 are more efficient in promoting translation initiation as compared with the Sabin 1 RNA (G480-U525). The Sabin 2 strain has a U and an A at position 398 and 481, respectively, while its predecessor, strain P712, is shown to have C398 and G481. All the derivatives of the Sabin 2 isolated from vaccine-associated paralytic poliomyelitis cases shown reversion to G481, and most of them reverted also to C398. It is proposed that bases at positions 398 and 481 may be involved in a tertiary interaction. The in vitro template activity of the Sabin type 2 RNA (A481) is significantly lower than that of the isolate RNAs with G481, thus confirming the relation between attenuation and translation efficiency demonstrated previously for the type 1 and type 3 Sabin strains. The C----U change at position 398 exerted only a minor effect on the RNA template activity.

PMID:
1661980
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center