Send to

Choose Destination
Cell Signal. 2006 Nov;18(11):1941-6. Epub 2006 Apr 17.

IKKalpha stabilizes cytosolic beta-catenin by inhibiting both canonical and non-canonical degradation pathways.

Author information

Laboratory of Molecular Signaling and Apoptosis, Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.


Beta-catenin is a bi-functional protein. It is not only a major component of the cellular adhesion machinery, but is also a transcription co-activator of the Wnt signaling pathway. The cytosolic levels of the beta-catenin protein, as well as its subcellular localization, are tightly regulated due to its oncogenic potentials. Two independent pathways are found to regulate beta-catenin. The canonical pathway is induced by the Axin/adenomatous polyposis coli (APC)/glycogen synthase kinase-3beta (GSK-3beta) complex which is dependent on GSK-3beta phosphorylation. The non-canonical pathway is mediated by p53-induced Siah-1 which is GSK-3beta phosphorylation-independent. Recently, several studies reported that IkappaB kinase alpha (IKKalpha) could stabilize beta-catenin and stimulate beta-catenin/T cell factor (Tcf)-dependent transcription. Here we report that IKKalpha could inhibit beta-catenin degradation mediated not only by the Axin/APC/GSK-3beta complex, but also by the Siah-1 pathway. Consistently, we found that IKKalpha abolished the inhibition of beta-catenin/Tcf-dependent transcription by Siah-1. Furthermore, we found that IKKalpha interacted with beta-catenin and inhibited beta-catenin ubiquitination. Taken together, our results provide a new insight into IKKalpha-mediated beta-catenin stabilization.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center