Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2006 Jun 19;140(1):281-92. Epub 2006 Apr 17.

Localization of the Na(+)-coupled neutral amino acid transporter 2 in the cerebral cortex.

Author information

1
Department of Neuroscience (Section of Physiology), Università Politecnica delle Marche, Via Tronto 10/A, Torrette di Ancona, I-60020 Ancona, Italy.

Abstract

We studied the distribution and cellular localization of Na(+)-coupled neutral amino acid transporter 2, a member of the system A family of amino acid transporters, in the rat and human cerebral cortex using immunocytochemical methods. Na(+)-coupled neutral amino acid transporter 2-positive neurons were pyramidal and non-pyramidal, and Na(+)-coupled neutral amino acid transporter 2/GABA double-labeling studies revealed that Na(+)-coupled neutral amino acid transporter 2 was highly expressed by GABAergic neurons. Double-labeling studies with the synaptophysin indicated that rare axon terminals express Na(+)-coupled neutral amino acid transporter 2. Na(+)-coupled neutral amino acid transporter 2-immunoreactivity was also found in astrocytes, leptomeninges, ependymal cells and choroid plexus. Electron microscopy showed robust Na(+)-coupled neutral amino acid transporter 2-immunoreactivity in the somato-dendritic compartment of neurons and in glial processes, but, as in the case of double-labeling studies, failed to reveal Na(+)-coupled neutral amino acid transporter 2-immunoreactivity in terminals. To rule out the possibility that the absence of Na(+)-coupled neutral amino acid transporter 1- and Na(+)-coupled neutral amino acid transporter 2-positive terminals was due to insufficient antigen detection, we evaluated Na(+)-coupled neutral amino acid transporter 1/synaptophysin and Na(+)-coupled neutral amino acid transporter 2/synaptophysin coexpression using non-standard immunocytochemical procedures and found that Na(+)-coupled neutral amino acid transporter 1 and Na(+)-coupled neutral amino acid transporter 2+ terminals were rare in all conditions. These findings indicate that Na(+)-coupled neutral amino acid transporter 1 and Na(+)-coupled neutral amino acid transporter 2 are virtually absent in cortical terminals, and suggest that they do not contribute significantly to replenishing the Glu and GABA transmitter pools through the glutamate-glutamine cycle. The strong expression of Na(+)-coupled neutral amino acid transporter 2 in the somato-dendritic compartment and in non-neuronal elements that are integral parts of the blood-brain and brain-cerebrospinal fluid barrier suggests that Na(+)-coupled neutral amino acid transporter 2 plays a role in regulating the levels of Gln and other amino acids in the metabolic compartment of cortical neurons.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center