Send to

Choose Destination
See comment in PubMed Commons below

Vibration of micromachined circular piezoelectric diaphragms.

Author information

Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.


Electrically and mechanically excited resonances in micromachined circular piezoelectric diaphragms have been investigated. The diaphragm structures were piezoelectric unimorphs consisting of Pb(Zr0.52,Ti0.48)O3 (PZT) films and thermally grown silicon oxide (SiO2) layers. For electrical excitation, ring-shaped interdigitated (IDT) electrodes formed on the top of the PZT layer were used to induce strain in the diaphragms. The diaphragm structures behaved much like circular membranes in which the membrane tension was approximately 206 N/m, at the fundamental modes. For higher modes, the resonance frequencies deviated from the theoretical values due to the finite stiffness of the diaphragms. Under mechanical drive, both symmetric and asymmetric modes were excited. However, for electrical excitation, the symmetric modes were dominant due to the symmetry of the driving IDT electrodes. At a pressure of 727 Torr, the quality factor was approximately 250, and this rose to 2000 at pressures below 1 Torr. When a forward bias was applied to the diaphragm, the membrane tension decreased, but under reverse biases the tension increased. However, because of repoling under reverse biases greater than the coercive field of the PZT film, the achievable increase in the membrane tension was limited. In the diaphragm structure, the nonlinear vibration was governed by geometric nonlinearity rather than material nonlinearity. In addition, evidence of non-180 degrees domain wall motion of the PZT layer in released diaphragms was observed.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center