Format

Send to

Choose Destination
Plasmid. 1991 Nov;26(3):209-21.

Characterization of a region of the Enterococcus faecalis plasmid pAM beta 1 which enhances the segregational stability of pAM beta 1-derived cloning vectors in Bacillus subtilis.

Author information

1
Division of Biotechnology, PHLS Centre for Applied Microbiology and Research, Salisbury, Wiltshire, England.

Abstract

The nucleotide sequence of a 2.13-kb EcoRI-HindIII, pAM beta 1-derived fragment, isolated from the gram-positive cloning vector pHV1431, has been determined and shown to encode two ORFs. ORF H encodes for a protein of 23,930 Da which exhibits substantial homology to bacterial site-specific recombinases, particularly the resolvases of the gram-positive transposons Tn917 (30.3% identity) and Tn552 (31.6% identity) and the clostridial plasmid pIP404 (27.1% identity). The second ORF (I) is incomplete and encodes a polypeptide which has significant homology with Escherichia coli topoisomerase I (26.0% identity). Insertion of either the entire 2.13-kb EcoRI-HindIII fragment or a 0.73-kb EcoRI-DraI subfragment encoding only the resolvase into the pAM beta 1-based cloning vector pMTL500E causes a significant enhancement of segregational stability (from 6.5 X 10(-2) to 3.0-4.0 X 10(-3) plasmid loss per cell per generation). Improved segregational stability is mirrored by a reduction in plasmid polymerization. The introduction of a stop codon into the resolvase coding region negates its ability to promote segregational stability. It is proposed that the identified determinant stabilizes pAM beta 1-based vectors in Bacillus subtilis by maintaining the plasmid population in the monomeric state, thereby reducing the chances of producing plasmid-free segregants.

PMID:
1661428
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center