Send to

Choose Destination
See comment in PubMed Commons below
Mol Biol Evol. 2006 Jun;23(6):1324-38. Epub 2006 Apr 12.

The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants.

Author information

Département de Biochimie et de Microbiologie, Université Laval, Québec, Canada.


The phylum Streptophyta comprises all land plants and six monophyletic groups of charophycean green algae (Mesostigmatales, Chlorokybales, Klebsormidiales, Zygnematales, Coleochaetales, and Charales). Phylogenetic analyses of four genes encoded in three cellular compartments suggest that the Charales are sister to land plants and that charophycean green algae evolved progressively toward an increasing cellular complexity. To validate this phylogenetic hypothesis and to understand how and when the highly conservative pattern displayed by land plant chloroplast DNAs (cpDNAs) originated in the Streptophyta, we have determined the complete chloroplast genome sequence (184,933 bp) of a representative of the Charales, Chara vulgaris, and compared this genome to those of Mesostigma (Mesostigmatales), Chlorokybus (Chlorokybales), Staurastrum and Zygnema (Zygnematales), Chaetosphaeridium (Coleochaetales), and selected land plants. The phylogenies we inferred from 76 cpDNA-encoded proteins and genes using various methods favor the hypothesis that the Charales diverged before the Coleochaetales and Zygnematales. The Zygnematales were identified as sister to land plants in the best tree topology (T1), whereas Chaetosphaeridium (T2) or a clade uniting the Zygnematales and Chaetosphaeridium (T3) occupied this position in alternative topologies. Chara remained at the same basal position in trees including more land plant taxa and inferred from 56 proteins/genes. Phylogenetic inference from gene order data yielded two most parsimonious trees displaying the T1 and T3 topologies. Analyses of additional structural cpDNA features (gene order, gene content, intron content, and indels in coding regions) provided better support for T1 than for the topology of the above-mentioned four-gene tree. Our structural analyses also revealed that many of the features conserved in land plant cpDNAs were inherited from their green algal ancestors. The intron content data predicted that at least 15 of the 21 land plant group II introns were gained early during the evolution of streptophytes and that a single intron was acquired during the transition from charophycean green algae to land plants. Analyses of genome rearrangements based on inversions predicted no alteration in gene order during the transition from charophycean green algae to land plants.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center