Format

Send to

Choose Destination
Am Nat. 2006 Jun;167(6):889-900. doi: 10.1086/503578. Epub 2006 Apr 11.

Intermediary metabolism and life-history trade-offs: differential metabolism of amino acids underlies the dispersal-reproduction trade-off in a wing-polymorphic cricket.

Author information

1
School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA.

Abstract

Although the differential flow of metabolites through alternate pathways of intermediary metabolism is thought to be an important functional cause of life-history trade-offs, this phenomenon remains understudied. Using a radiolabeled amino acid, we quantified genetic differences in in vivo amino acid metabolism between morphs of the wing-polymorphic cricket Gryllus firmus that trade off early-age reproduction and dispersal capability. Lines selected for the flight-capable morph, which delays reproduction, oxidized a greater proportion of radiolabeled glycine and converted a greater amount into somatic lipid, mainly triglyceride (flight fuel). By contrast, lines selected for the flightless, reproductive morph converted a substantially greater proportion of glycine into ovarian protein. Compensatory interactions between amino acid and lipid metabolism make up a key aspect of specialization for dispersal versus reproduction in G. firmus: increased oxidation of amino acids by the flight-capable morph spares fatty acid for enhanced conversion into triglyceride flight fuel. By contrast, increased oxidation of fatty acid by the flightless morph spares amino acids for enhanced biosynthesis of ovarian protein. Studies of amino acid and lipid metabolism in G. firmus currently represent the most detailed analyses of genetic modifications of intermediary metabolism that underlie a functionally important life-history trade-off found in natural populations.

PMID:
16609924
DOI:
10.1086/503578
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for University of Chicago Press
Loading ...
Support Center