Send to

Choose Destination
See comment in PubMed Commons below
J Ind Microbiol Biotechnol. 2006 Jul;33(7):552-9. Epub 2006 Apr 12.

Structural diversity and functional novelty of new carotenoid biosynthesis genes.

Author information

Biological and Chemical Sciences and Engineering, Central Research and Development, E. I. DuPont de Nemours Inc., Experimental Station, E328/B48, Wilmington, DE 19880-0328, USA.


Many new carotenoid synthesis genes have recently been identified through genomic sequencing or functional cloning. Some of them exhibit novel structures and/or novel functions. This review describes such examples in the families of lycopene beta-cyclases, putative homologues of phytoene dehydrogenases and new carotenoid hydroxylases. Both the functionally novel lycopene beta-monocyclases and structurally novel fusion-type of lycopene beta-cyclases were described. Another newly discovered sequence of lycopene beta-cyclase described might represent a new class of lycopene beta-cyclases previously not identified in several cyanobacteria. Three examples of putative homologues of phytoene dehydrogenases were described, however, they were confirmed to encode different and/or new functions such as beta-carotene ketolase, 4,4'-diapolycopene oxygenase or prolycopene isomerase. Two new carotenoid hydroxylase genes were described that encoded the new function of 2,2'-beta-ionone ring hydroxylase or 3,3'-isorenieratene hydroxylase. Phylogenetic analysis of these genes shed light on their possible evolutionary origins. These new genes also provide tools for synthesis of novel and desirable carotenoids by genetic engineering.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center