Send to

Choose Destination
See comment in PubMed Commons below
Nat Med. 2006 May;12(5):580-4. Epub 2006 Apr 9.

Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor.

Author information

Department of Cellular and Molecular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Laboratorium voor Cellulaire en Moleculaire Immunologie, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium.


High systemic drug toxicity and increasing prevalence of drug resistance hampers efficient treatment of human African trypanosomiasis (HAT). Hence, development of new highly specific trypanocidal drugs is necessary. Normal human serum (NHS) contains apolipoprotein L-I (apoL-I), which lyses African trypanosomes except resistant forms such as Trypanosoma brucei rhodesiense. T. b. rhodesiense expresses the apoL-I-neutralizing serum resistance-associated (SRA) protein, endowing this parasite with the ability to infect humans and cause HAT. A truncated apoL-I (Tr-apoL-I) has been engineered by deleting its SRA-interacting domain, which makes it lytic for T. b. rhodesiense. Here, we conjugated Tr-apoL-I with a single-domain antibody (nanobody) that efficiently targets conserved cryptic epitopes of the variant surface glycoprotein (VSG) of trypanosomes to generate a new manmade type of immunotoxin with potential for trypanosomiasis therapy. Treatment with this engineered conjugate resulted in clear curative and alleviating effects on acute and chronic infections of mice with both NHS-resistant and NHS-sensitive trypanosomes.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center